Remarks on continuous, non-differentiable flows

Michael Jung
August 26, 2001

Abstract

We shall (try to) show that any continuous flow ¢ : IR x € — @
is similar to a continuously differentiable flow. That is, there exists a
homeomorphism 7 : €= @ such that t = 77" (¢(7(x), t)) is differentiable
for each # € @ and the derivative is continuous (in IR x @).

A flow is a continuous mapping ¢ : Rx € — @, with ¢(¢, ¢(s, z)) = ¢(t+s, z)
and ¢(0,z) = « for all z € Cand s,? € IR. A partial flow is a mapping ¢ : U — @
satisfying the above conditions for some set [—¢,¢] x U in IR x @ such that they
make sense. A set {¢(¢, ) : ¢t € I} is called a flow line if I is some interval, and
if I = 1R, it is called an orbit. A flow ¢ is called differentiable if %(t, ) exists,
we denote with ¢’ the derivative for brevity.

We denote with Sy the set of stationary points, i. e. Sy ={z € C: ¢(t,z) =
z,t € R}. Then Ny = @Q\Sy is open. A flow-boz is a set of the form ¢([—¢, ], T'),
where T'N ¢([—¢, €], {z}) contains at most one point for every z € T'. Tt is well-
known ([Aart,Oversteegen], [Whitney]), that for each zy € Ny there exists a
flow-box neighborhood U = ¢([—¢,¢],T') with 2y € T and T' compact. Ty :=T
is called a cross-section of U/. Moreover, i denotes the imaginary unit, i = —1
and S5 denotes the unit sphere in IR®. A curve or an arc is a continuous function
into @ with domain [0, 1]. An injective curve is called a Jordan curve.

This first lemma shows, that the cross section can be chosen 1n a nice fashion.

Lemma 0.1. Fach point g € N has a flow-box neighborhood U with Ty being
the image of a continuous, injective mapping v : [0,1] — .

Proof. We first show that 'y may be chosen path connected. First we may
choose U to be simply connected. Let z1,25 € Ty Let [ : [0,1] — U be some
curve connecting x1 and x» inside U. Now {(t) = ¢(7(t), v(¢)) with 7(¢) € [—¢, €]
and y(¢) € I'y. Thus v : [0,1] = I'y is well-defined. To see that it is continuous,
let ¢, — to in [0, 1]. By compactness of I'y there exists a subsequence (¢, ) —
v(so) and 7(tp) — 7(s1). Thus

Wtny) = ¢(T(tni))s V(tni)) = &(7(51),7(50))

as k — oo. On the other hand, I(t,,) — {(to) = o(7(t0),7v(t0)). But by
construction of 'y this implies 7(50) = 7( o) and 7(s1) = 7(s0).
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Assume that the the three points x1, 22, x3 € 'y are not mutually connected
by a single Jordan curve. In other words, there exists y € T, y ¢ {21, 29, 23},
such that each z; is connected with y by a single arc o; inside I'y and o Na; =
{y} for k # j. We now take a Neighborhood V of y, such that appropriate arc-
restrictions of the three arcs separate V into three disjoint, simply connected
sets G, where G does not border on a;\{y}. Now, fix ¢(1/2,y) € G}, then
there exists a neighborhood W of (1/2,y) such that for all (¢, w) € W we have
¢(t,z) € int(G;). Thus, there exists a z € a;\{y} with (1/2,z) € W. But
since (G; does not border on a;\{y}, the flow line through z and ¢(1/2, z) must
intersect some other ag, k # j. This is a contradiction, since a1, as, s where
subsets of the cross-section.

Thus for a finite number of points in the cross-section I'r7, there is a Jordan
curve passing through these. Using the compactness of the cross-section, we
find that the the whole cross section is a Jordan curve. It follows from a simple
topological argument, that I'yy cannot be a closed curve. Thus, I'ry is the image
of some injective v : [0, 1] — . O

The next lemma shows that locally a differentiable flow exists, that keeps
the boundary point-wise invariant.

Lemma 0.2. Let ¢([—¢,€],T) be a flow-box F' with v the Jordan curve param-
eterization of I'. Then there exists a continuously differentiable partial flow

¥ [—€, €] x F, such that ¢(t,z) = (¢, z) for (t,z) € OF.

Proof. The boundary of F'is composed of two parts, one being the two flow lines
P([—e¢, €], {7(0),(1)}) and the other the cross sectional boundary ¢({—e¢, ¢}, I'r).
We will first construct a continuously differentiable flow that leaves the former
set-invariant and the latter point-wise invariant.

Since the boundary of F is a Jordan curve, there is a conformal mapping
Q: F - Q, (continuously differentiable in the interior and continuous on the
boundary), where @ = [—a,a] x [0,1] is a rectangle, with the following prop-
erties: Q(—e,v(0)) = (—a,0), Q(e,7(0)) = (a,0), Q(—€,v(1)) = (-a,1), and
Q(e,v(1)) = (a, 1) [Pommerenke]. Since we are not interested in the conformal-
ity of the mapping €, only in its (continuous) differentiability, we may assume
a = ¢ by adding a rescaling mapping.

We define the partial flow ¢ through its flow lines. In @ we take the straight
lines that connect Q(é(—e¢,v(s))) and Q(¢(e,v(s))) (see Fig. 1). Since 7 is
a bijection on I', these straight lines represent a partial flow on . The flow
lines of 1 are now the images under Q~!. Thus ¢ is a well-defined, partial
flow, and continuously differentiable with respect to the first variable, since € is
continuously differentiable. It is also easy to check, that the (reduced) boundary
conditions are satisfied.

We can now reparameterize 1, such that the flow line boundary is not
only set-invariant but point-wise invariant. The (unique) reparameterization on
the boundary flow lines themselves consists of two continuous, bijective [—e¢, €]-
valued functions on [—e¢, €¢]. They can be approximated by a continuum of dif-



Figure 1:

ferentiable, bijective functions with the same range and domain. These may be
used as reparameterization of the flow in the interior of F. O

The following lemma reduces each local flow to the trivial flow. It may
convenient to have such a reduction, although presently I can only see use in it
in future streamlining of proofs.

that ¢({6},[0,1]) = {6} x [0,1] for § = £1 and ¢([-1,1],{6}) =
for 6 =0,1. Then ¢ is similar to the trivial partial flow T on Q, i. e. T(t,2) =
z+t(1,0).

Proof. Let T' be the cross section for ¢ given as {—1} x [0, 1]. Define @ : Q@ — @
as ®(x) = ¢(t,g) for x = (¢, 9) € Q. It is continuous and bijective. It is therefore
a homeomorphism and maps 7 into ¢. O

Lemma 0.3. Let ¢ : [-1,1] x Q be a partial flow in Q = [—1,1] x [0, 1], such
[_

This lemma is needed to smooth the cross sectional boundaries, after every-
thing else will have been smoothed.

Lemma 0.4. Guen u; € C([0,1], @) with N(u;)(x), RN(u;)(x) > 0 for z € [0, 1]
and u;(0) = u;(1) = 1 for j = 0,1, there exists a continuously differentiable
partial flow v : [0,1] x [0,1]% — [0,1]? with: (i) (0, ) leaves the boundary of
[0,1]% point-wise invariant and (i1) ¥'(j, ) = u;.

Proof. Let g be the trivial flow along the flow lines {(¢,z) : t € [0,1]} (= €

[0,1]). We will establish a continuously differentiable partial flow, that matches
the boundary condition, fulfills ¥1(j, 1/2) = u;(1/2), and

W41 (8, 2) = u"(t, 2)loo < MAX [Y44"(J, 1/2) = ¥ (4, 1/2)] (1)

for (t,z) € [0,1]* and n = 0. This can be achieved by taking any function
f :[0,1] = IR, that: (i) is strictly bounded by below by u(t) = 0 and above



by o(t) = 1, (ii) with f'(j) = S(u;(1/2))/R(u;(1/2)) for j = 0,1, and (iii)
[l = 1|l < |f(4) — 1]. By taking such f as a flow line between the points
(0,1/2) and (1, 1/2), taking the straight lines between the points (0, j) and (1, j),
(7 =0,1) and taking simple convex combinations in the two separated parts of
the square we obtain ;. (The flow keeps the lines (¢,[0,1]), ¢ € [0, 1] invariant
as time varies.)

We reiterate this scheme in both of the two separated regions. u and o
will be given by either the boundary line of the square or the flow line gen-
erated by f. Indeed, this process may be repeated to obtain a sequence of
partial flows. A partial flow 1,41 in that sequence satisfies: (i) the flow lines
at {(0,k27"=") 1 k = 1,3,...,2"*! — 1} are strictly separated by the flow
lines at K, := {(0,k27") : k = 0,1,...,2"}, which coincide with those of ¢y,
(1) Yng' (G, 2) = (L, S(uj(2x))/R(u;(z))) for ¢ € K, U ((1,0) + Ky), and (iii)
equation (1) is satisfied. The derivatives of 1, converge uniformly to some con-
tinuous function {/)v’, since u; is continuous (j = 0, 1). In fact, also t,, converges
uniformly to l,/; Thus ¢ is continuously differentiable with respect to ¢ (with
derivative lf/)u’)

We now have to have to reparameterize IZ by some continuous function ¢,
continuously differentiable in ¢, such that %h:j = R(u;(x)) for j = 0,1.
We then obtain the desired partial flow . O

Theorem 0.5. FEvery continuous flow in @ 1s similar to a differentiable flow in

T.

Proof. Since Ny is locally compact it can be covered by a countable number
of the flow-box neighborhoods (F;)zen,, which we call (F},),,. We proceed by
induction. A flow ¢ that is differentiable in int(F}) that is homeomorphic to ¢
in Fy via 1 can be constructed as seen by the previous lemmas. We “surgically”
replace ¢ with 9 on Fj. The boundary conditions guarantee that m on Fy can
be extended (trivially) to a homeomorphism on C.

Suppose we have constructed a flow i, which is differentiable in F, =
Ug<n Fi that is homeomorphic to ¢ via 7, with the additional property: ¥ has
the same values on the (finite number of) cross sections on the boundary of ﬁn
and coincides with ¢ outside of ﬁn We then replace Fj, 41 by a (finite) collection
of flow-boxes (Gj);, which have the properties: each G; has at most two non-
connected cross sectional boundaries in common with ﬁn, the members of the
collection C = (G;); U F, have pairwise disjoint interior and UG; = Fr41\Fp
(see Fig. 2). On each of the G; we replace ¢ with a partially differentiable flow.
We thus obtain by the same method as before a flow, that is differentiable on
the union of the interiors of C and otherwise coincides with ¢.

In the next step we make the flow differentiable on the remaining, finite
number of flow lines inside of F,,41. To this end, we take a small (in comparison
with the distances between the remaining non-differentiable flow lines) cross
section at some point at each flow line and repeat the procedure. This time,
the boundary already contains only differentiable flow lines, wherefore the only
non-differentiable points remaining are on the cross-sectional boundaries.
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Figure 2:

We take a small (in comparison with the distances between the remaining
cross sectional boundaries) flow-box around each cross section and map it home-
omorphically onto @ = [—1,1] x [0,1]. We now use Lemma 0.4 and take the
inverse image as a local replacement for the previous flow.

In conclusion we have completed the induction. We obtained a sequence of
flows v, which converge uniformly on every compact set in Ny by construction.
Moreover, we may require the original flow-boxes at each x € Ny to have a
diameter of at most dist(z, Sy) without loss of generality. Then we find that
the corresponding homeomorphisms 7, on @ do not only remain fixed on each
compact set in Ny for n > ng, but they also converge uniformly to some 7 for
each compact set in @, where 7 will be the identity on S;. We may compactify
€ by adding {oo} and treat this point just as a fixed point before. We thus have
proved the theorem. O

Corollary 0.6. Fuvery continuous flow in Sy 1s similar to a differentiable flow

mn 52.

Corollary 0.7. For every € > 0 and every continuous flow ¢ in © (or Sy ) there
exists a C flow ¢ in € (or Sy ) that is similar to ¢, such that (i) ||¢ — ¢l < €
and (i) if Y(t,-) = 7716 (t, 7()) then |7 — id||co < €.

Proof. In all proofs the differentiability relies on the local mappings, which
stem either from a change of parameter, conformal change of domain or some
continuous shifting inside a square. All these operations can be made to be C'*°.
The patching of these local mappings to a global one is included in that scheme.

To see that the differentiable flow 1 can be chosen arbitrarily close to ¢, all
that is needed is to choose the local flow boxes with a diameter less than ¢/2.

This will yield both (i) and (ii). O

Of course, the theorem and the corollaries remain true, if we replace € or Sy
with any subset M thereof. Differentiability however can only be obtained in



the interior of M.



