MULTIPLIER THEOREMS ON VECTOR-VALUED BESOV
SPACES

MICHAEL JUNG AND LUTZ WEIS

ABSTRACT. We prove generalisations of the Mikhlin and Marcinkiewicz multi-
plier theorems for vector-valued Besov spaces, using different geometric prop-
erties of the underlying vector spaces. We apply the result to Volterra Integral
Equations.

1. PRELIMINARIES

We fix our notation and recall the definitions of function spaces we will use as
well as some of their important properties. We let @ = {z € €: Re(z) > 0} and
IRg_ ={z€R:2>0}. X and Y denote topological vector spaces and B(X,Y) is
the space of continuous linear operators from X into Y. For F : RY — B(X,Y)
and g : RV — X we defined the Y-valued convolution integral as usual by

(F*g)() :/ F(t—s)g(s)ds
RN
whenever the Bochner integral exists. S(IRN, X) is the space of rapidly decreasing
X-valued functions. Similarly we define for X-valued functions the Bochner spaces
LP(IRN,X), and the Sobolev spaces Wy’ (RY, X) for 1 < p < oo and N € N. The
space of X-valued, tempered distributions is given by S’(IRN, X)= B(S(IRN), X),
cf. [9], Section 3.1 for details.
The (N-dimensional) Fourier transform of f we denote by f or Ff, where

f) = (Fnw = [ e i< ps

IRN
fort e RN and f € S(IRN, X). The inverse Fourier transform is known to be

(1) (FTIN(2) = =@2m) "N F(f(=))(2).

Note that for an Hilbert space X the (extended) mappings F and F~! are actually
continuous inverses of each other in LZ(IRN, X), while this is not the case for other
spaces we will consider.

A Banach space X is said to have Fourier type p for some 1 < p < 2, if for p
the Hausdorff-Young inequality holds, i. e. there exists a constant C'r(p) > 0 such
that for all f € LP(IRN,X) we have ||Fflly < Cx(p)||f|lp, where 1/¢+ 1/p = 1.
Obviously, every Banach space has type 1. Moreover, the Banach space X has
Fourier type 2 if and only if X is a Hilbert space. A space L,(, 1) has Fourier
type p = min(q, ¢/(¢—1)). Also the dual space, every closed subspace and quotient
space of a Banach space X has the same Fourier type as X. (Cf. [6].)
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A Banach space X is said to have the UMD property, if there exists a 1 < py < o0,
such that the Hilbert transform # given by

(Hf)(s) = /]R(t — )7 f(s)ds

extends to an element of B(Ly,(IRY, X)). Then it is also true that the Hilbert
transform bounded on L, (RN, X)) for all 1 < p < co. Subspaces, quotient spaces
and products of spaces that have UMD also have the UMD property. UMD implies
reflexivity, even uniform convexity, but not conversely, cf. [3]. The spaces L,(Q, u)
have UMD for any measure space (2, ) and 1 < p < oo.

Throughout this article we assume sums without index range to have a finite
index set. Let IJJ-V denote the sets

{z e RN : 2071 < |a| < 2t}
for j € IN. Also I} := {|z| < 2}.
We define the Besov spaces B;Vq(IRN,X) for 1 < p,g<oo,s€lR asin [9]: let
® be the set of all sequences ((ﬁ;V)J in S(IRY), such that
(i) suppo C IV, j € INo,
(i) Ejzee)(s)=1, seRY,
(iii) sup; ||.7:_1¢§V||1 < 00.

Then for a fixed sequence from & we define the B -norm
= Q@ IIFSF) * 1)),
7j=0

and the Besov space B;yq(]RN, X) is the set of all distributions in S’(]RN, X) which
have a finite B) = norm supplied with that norm. Note that different sequences in
® yield equivalent norms (cf. [10]). To make calculations simpler, we often use a
special sequence (¢§V) generated by a positive function ¢ € S(IR) with support
in [1/2,2], such that }7, #(27%) = 1. Then put ¢§V =¢(277 - |)for j € N
and ¢ =35, <, #(]127% -]). A well-known (cf. [10]) equivalent norm for the Besov
spaces B;q(]R,_X) for 0 < s < 1 is given by

— f(s 1/q
11y, =5+ ([ f 0L g — i)

Another decomposition of IR related to Besov spaces is the Lizorkin decompo-
sition. Let

Ky, ={zeR" : (r; - 1/2)2" 7" < z; < (r; +1/2)2871}
for 7 € Ty := {4, £3}" with max; |r;| = 3/2 and k € IN, and let Ky = {z €
N
Hzleo < 1}
The Bessel potential spaces Hj ([RN, X) for 1 <p < o0, s € R are defined as in
[9] as the completion of the set

{F €SN, X) : F (1 + |- )*/*Ffl € L,(RY, X)}.
with the norm ||f|[ms = [F71[(1+ |- [%)*/2F A,
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FiGure 1. 7 € {£1/2,43/2}2, |n1]| or || equal to 3/2

There are several relations between these space, which we quote here for fur-
ther reference (cf. e. g. [9]; [11], Section 4.3). All inclusions are understood to be
continuous embeddings. Let 1 < p, ¢ < oo, then

wr(RY, X) c B; (R, X) s < n;
By 0, (IRY, X) C By, (R", X) 1<go<q1 <05 €R;
By (RY, X) C BY (IRY, X) 50> 51

HH (RN, X) € By (RN, X) ¢ Hi= (RN, X) s € R g # oo
B (RN, X) c Hy(RY,X) C By ,(RY,X) seR

The last set of inclusions can be proved just as in the scalar-valued analog (compare
e. g. the proof [2], Theorem 6.2.4), by applying Remark 2.4 below with X = Cto the
uniformly norm-bounded sequence of multipliers 27 (272" + | . |2)“’/2q§(-) (m > —1).

If X has the UMD property, then WP”(IRN,X) = HI?(]RN,X) with equiva-
lent norms for all n € IN, while any inclusion Wp”’(]RN,X) C H;’([RN,X) or
HZ’,L(IRN,X) C W;(IRN,X) for odd n implies that X has the UMD property
(cf. [11], Section 3.8).

For more information regarding vector-valued Besov, Bessel potential, and Sobolev

spaces cf. [7], [9], and [11].

2. MIKHLIN TYPE MULTIPLIERS

We assume in the following that X and Y are arbitrary Banach spaces and will
state any necessary conditions on these spaces in the propositions where needed.

Lemma 2.1. Let k: RN — B(X,Y) be a function, such that k and k(-)* : RN —
B(Y*, X*) are strongly measurable and

(2) /}RN [|k(s)z||yds < Co|z]|x, /}RN 1k (s)"y* || x+ ds < Ci||y"]

Then (K f)(t) = [~ k(t —s)f(s)ds, t € RY, for f € S(R", X) can be extended
to a bounded operator K : L,(RN, X) = L,(RN,Y) for 1 < p < cc.

Y+
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Proof. Suppose f € S(IRY, X). Then

/|| ||dt</ / lk(t — 5) £(s)||dt ds

<Co [ 1F)ds < Coll Al

Thus there exists an extension K : Ll(IRN,X_) — Ll(IRN,Y). If p = co we deal
with (K f)(t) = [r~ k(t—s)f(s)ds for f € Leo (RY, X) as a Dunford-Pettis integral
and estimate for y* € Y*.

<V D@ > 1< [ < k=50 ) > fds
RN
< [ Wkt = 95 17Glds < Gl 11

Thus there exists an extension K : Lo, (RN, X) = Lo (RN, V). 1f L2 (RY | X)
denotes the closure of simple functions > zxx a4, with zx € X and vol(4) < oo,
then one can check that K maps L9 (RN, X) into L9 (RN, X). Indeed, for f =
zxa we have (K f)(t) = [,_, k(s)xz ds — 0 for [t| — co. The Riesz-Thorin Theorem
(cf. [2], Theorem 5 1 2) now ylelds the claim for 1 < p < oco. O

Remark 2.2. Lemma 2.1 is an extension of [4], Theorem 1.14. Tt is shown there
that the second condition cannot be omitted. For Hilbert spaces Lemma 2.1 is also
implicit in the proof of [6], Corollary 10.4.

Proposition 2.3. Let X,Y have Fourier type p € [1,2] and for some s > N/p let
m € H3(RN,B(X,Y)), then
(Kf(t) =m(n)f(1), teR",

for f € S(RN,X) can be extended to a bounded operator K : Lq(IRN,X) —
LQ(IRNaY)

q and m.

, where C' 1s independent of

Proof. Tet 1/p+1/p’ = 1. We then get for g € H;(]RN,Y_)

en™ [ el = [ g

([ s« weyrya) ([ avieroea)”

1/p
ey ([ (1 prrgenora)
= Cx(C gl

IA

IN

where Cg = [~ (1 + [t|?)7*7/2dt, which is finite, whenever s > N/p.
Applying this to g(¢t) = m(t)z for a fixed £ € X, we obtain

[ I el ds < Cllmlmgns s el
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Since X* and Y* also have the same Fourier type p, we obtain in the same manner,

using (F~'m)(s)* = (F~'m(-)*)(s), the estimate

[ )5 e < Cllmllig s v

Now we apply Lemma 2.1 to finish the proof. O

vl

Remark 2.4. If m(s) = n(s)A, where n € H ([RN) is a scalar-valued function
and A € B(X,Y), then no Fourier type requirement on X or Y is necessary in
Proposition 2.3.

Tn the following let 40,1 € S(IRY), such that supptyy C {z € RV : |z| < 4},

suppypy C {w € RN : 1/4 < || < 4}, and Yol {pemn joi<2y = Y1 l{zemna/o<|ol<) =
1

Theorem 2.5. Let M : RN — B(X,Y) be such that there erists a constant C with
[91C)M 2Ny sx vy < C
()M Oy wmy sx vy < C

for allk € N. If X and Y both have Fourier type 1 < p < 2 and r > N/p then
Ri() = M@)F(), teRY,
for f € S(RN, X) can be extended to a bounded operator
K :B; (RY,X) = B (R",Y)
forall 1 <q,r<oo, s €IR.
Proof. We define operators K; for f € SR, X) through

(K0 = [ kyie=o)fds, 1emY
where k; = F1(1(279 )M (-)) for j € N and ko = F~1(poM). For all j € IN we

have
FFENGN) # Kf) = 6] Mf = 1 (277 )M} [ = F(K;(F7(87) 1))
and similarly for j = 0, so that ||.7:_1(¢JN) * K fllg < || K| ||.7:_1(¢§V) * fllq. Since

Kflly

q,r

=D _FIIFT 6 + K fllg)
j=0
it remains to show that the norms || K;||, j € INg are uniformly bounded. Note that
for j € N we have ||| = [[k;l[1 = [|277k;(277:) |l = ||k;]}1 and
(3) 27k (2790) = 27 (FT (W (277 M) (2778) = FH ()M (27-))(8).

Now our assumption on M allows us to apply Proposition 2.3 (and its proof) to
assure that sup;en, || ;|| < oo and the proof is complete. O

Remark 2.6. (a) The first of the conditions on M in Theorem 2.5 may be replaced
by

le(z_k')M(')||H;(RN7B(XV)) <C

as can be seen by the calculation (3) in the proof.
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(b) Proposition 2.3, Remark 2.4, and Theorem 2.5 are also true, if we replace
Hy(RY, B(X,Y)) with B} ((RY, B(X,Y)) or W (RY, B(X,Y)) with n > N/p by
virtue of the inclusions between these spaces.

(c) In the latter case we may omit the auxiliary functions g and w1, if we
substitute W;([JN,B(X, Y)) for Wy ([RN, B(X,Y)) with j = 0,1, respectively.

Proof. (c) This is straightforward calculation; we will therefore only give the first
estimate for the first derivative and k > 3. Let D := {1/4 < |z| < 4}.

M (2l < M)y + 1M (25 ¥

< e lloolIM 25, m) + 1M (25) 112,

< oo (2P IM (2572, vy + 1M (25) 11, (1))
+ 2727 M2 (g vy + IIM2EY 2, vy

< 3(|lYr [l + 1)C.

O

Remark 2.7. The proof of Proposition 2.3 and Theorem 2.5 shows that we may
weaken the assumption of the theorem for M by assuming the pointwise conditions

IM@")ellwpar vy < Cllel]
IM()zllwnryyy < Cllzl
M)y lwpayxey < Cllyl
M)y lwp iy xy < CllY

instead of the uniform estimate. (Of course, this pointwise condition may be applied
to other spaces, e. g. H;(]RN, B(X,Y)), as well as to Proposition 2.3 if appropriately
modified.)

Corollary 2.8. Suppose ||(1 + |t|_)|°‘|M(°‘)(t)||B(X7y) < C for all multi-indices «
with || < N+ 1 and t € RN, (If X and Y are uniformly convex, it is sufficient
to consider |a| < N.) Then

Kf=Mf
for f € S(IRY, X) can be extended to an operator
K :B; (RY X)— B} (R",Y)
forall 1 <p,qg<oo,s€IR.
Proof. Let My = M(?k) for k € INg. We then find
[T A) @)]] = (2810 ) (2F2) )| < €.
and therefore
1M N0 < CU 1, v x) < C2VF ol (1Y),

Now apply Remark 2.6. If X is uniformly convex, it has Fourier type p > 1 (cf. [3])
and N/p < N. O
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3. MARCINKIEWICZ TYPE MULTIPLIERS

Before we establish the Theorem of Marcinkiewicz for vector-valued multipliers,
we need to establish the notion of bounded variation for functions f : RN — X fora
Banach space X. There are many ways of defining such a space. We need however a
certain approximation property (Lemma 3.1) of the N-dimensional step-functions.

We define
BVy (RN, X) := BV(R, BV(R, --- , BV(RR, X) - - -))

Note that the order of taking variations is important in this definition. This space
is handy in the upcoming proofs, although it is more common to define the space
of functions of bounded (N-dimensional) variation as follows.

Let S(N) be the symmetric group of order N and

On ={(a1,01] x -+ x (an,bn] s ag, b € R,ap < bg;k=1,... N}

the set of cuboids in IRY. A subset R C Qy is called a decomposition of RY,
if for R,S € R, with R # S we have RN.S = § and UR = RY. The set of all
decompositions is called DCy. For any function f:RY — X put

Aﬁf:f(:cl,... g1, 2+ h oz, .. en) — fa),
fork=1,...,N,and h >0 and

%f:AU(l) ,.,AG(") f

bo(1)=o(1) bo(n)=Ga(n)
for R = [a1,b1] X -+ X [an, bs] € @ and ¢ € S(N). For a function f : RN = X we
define the N-variation as

Varn (f) = sup ‘ Z [|ARS|| < oo.

RCDCN,0€ES(N) RER
Finally, let f,, : IR" x IRV ™" — X be defined by

Jon (@1, &n)(Tngr, . 2N) = f(Zoq), - To(vy),

if o € S(N). The space of all functions of bounded variation then is the Banach

space BV(]RN, X) of functions f, for which

Ifllsv = 1FO)+ > Vara(fon()(0)).

oc€S(N)n<N
1s finite.

Lemma 3.1. Let Uy = {f = > xixr, : i € X,R; € Qn}. We define ||f|lu =
inf{>" ||| - f = D wixr,} for f €Un. Then

(i) BV(RN, X) c BVy(IR", X).

(ii) For any f € BVy (IRN,X) there exists a sequence (fn)n C U with f,(s) —
f(s) uniformly and || fa|ju < 3N Vary(f).

(iii) If f € BVN(RY, X) and ¢ € S(RY), then ¢f € BVn(IRY, X).

Proof. (1): We shall prove the inclusion for N = 2 and leave the induction process
for N > 3 to the reader. Let f € BV(IR2,X) and choose o = id. Let g = fia(1).
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Then
I£llBv r, v x)) = lg(O)lBvar,x) + sup > [ Akgllavm, x)
REQ RER
< [£(0,0)[ + sup Z |A%F(0,-)]
REQI RER
+ sup |AR, (1£(-,0)] + sup |A%,fD)]
R1€Q1 3;1 i ' R2€Q1 R;Zz i
< |F(0,0)|+ sup Y JARF(0,)+ sup D |ARS(-,0)]
ReEQ1 RER ReEQ: RER
+ sup |A% £
i, 2 1A%
< lfllBv (2 x)-

For (ii) we again proceed by induction. Assume N = 1 and let f be of bounded
variation and w.l.o.g. right continuous. Let A(z) = limyN. f(y) — f(2). Then
for n € INg the set N, = {z : 1/(n 4+ 1) < |[A(z)| < 1/n} is finite, i. e. N, =
{azgn), e ,mi’éi)} Since f € BV (IR, X), we have that

co k(n)

h = Z Z A(l‘;n))x(rgn)’m)

n=0 j=0

is of bounded variation. Moreover, ¢ = f—h is of bounded variation and continuous.
Obviously, there exists h, — h with h, € Uy, such that Var(h,) < Var(h). For
e>0letV, = Z;zn l9(z;41)—g(x;)|, such that |Var(g)—V,| < ¢ for every variation
on a partition finer than that on (IJ);:'& Then g, = Z;:O(g(a:j) —9(Zj41)X(z,,00)
has variation V,,, thus Var(g,) < Var(g) 4+ ¢. Moreover, g, — ¢ in the supremum
norm, as maxo<j<n |¥j41 — ;| = 0, 29 = —oo and z, — +00. Thus we obtain a
sequence g, + h, — f as n = oco. Tt is obvious, that ||(g, + hn)|lu < 3Var(f) as
n — oo.

For any f € BVy (IRN, X) we find by the induction hypothesis an approximation
by step functions f, = S gkXr. € U1 with values gg in BVy_;(RV™', X). Fix
n € IN, such that ||f — fu||cc < €/2 and let ng € IN be the cardinality of the index
range of the sum. Each one of the finite number of step functions g, may in turn
be approximated in the sup-norm by step functions gr; = > hmxs,. € Un—1 by
the induction hypothesis. For each g, fix a g, such that ||gx — gr i||ec < €/2n0.

Since (Rg)r and (Sm)m are each subsets of decompositions, we have with f, =
> > GkIXRLXS,, that ||f — falle < €. Moreover, Ry X Sy C Qp, therefore we

have an approximating element f, in Un.
Now we verify the bound for the variation. We estimate by induction hypothesis

1l < 30 llgkallsva_a my-2 x)
k l

33 " lgwll By, rv-1 x) < 3%Vara(f),
k

IA

which proves the claim.
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To prove (iii), a induction in the same spirit yields the claim. For N = 1 we
have

9 fllBvr,x) < l[@lleollFllBv (. x) +/R||¢'(r)||oodﬂf||f||oo-

For N > 2 a generalization of Leibniz’ rule of differentiation is used. (]

Lemma 3.2. If f : RY — X is N-times continuously differentiable and there
erists a C' > 0, such that the derwatives satisfy

an
—f(,n drs(1y - drom) < C
L OO .

or all 0 € S(N) and 1 < n < N, then f € BV(IRY, X).
f ) ~ ~ 3 )

Proof. Let g be any partial derivative of f up to order N — 1. Then we obtain

9o(i)(0)(2) = 9o(3) f 9o (i) z)dz. We can use this fact to obtain for any
o € S(N) via 1nduct10n

fa nf / 8]30 Bza ) (fa,n(~)(0))d$g(1) o ~dza(n).
Tt is now easy to calculate the BV (IR™ | X)-norm of f. O

We will also need the following elementary facts, combined in a lemma.

Lemma 3.3. For any Banach space X and any 1 < p < oo the following holds:
(1) The set

(4) {fe i (RY, X)n Lp(IRN,X) : suppf is bounded }
s dense in L (IRN X).
(i) if f, f eLl(IRN X) andg,_aeLl(IRN,X*), then
[ <swg0>a= [ <fo.50>
RN RN

Proof. (1) This is proved as in the scalar-valued case. (ii) Since f = T‘lf €
LOO(IRN, X) we have with

[f 9] = /}RN < f(t),g(t) > dt
that [f,g] = [f, 77'3] = (F~1)*£.3] = [}.4). O

Proposition 3.4. Let X orY have the UMD property and let M € BV (IRN, B(X,Y)),
then

KIt) = M@)f), tem”
for f € S(IRN,X_) can be extended to a bounded operator
L,(RY, X) = L,(R",Y)
forall 1 < p < oc.
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Proof. Let My(t) = —isign(tg). Then the multiplier My, corresponds to the Hilbert
transform Hy with respect to the kth variable. This operator is bounded, since X
has the UMD property. Let Bi(a,b) = R x -+ x (a,b] x -+ x IR, where a,b €
R U {xo0}, a < b and (a,b] is located in the kth component. Then (a. ¢.)

XBr(at)(t) = 1= XBy(—o0,0)(t = @) = XBy(0,00)(t — b)
1

— 5L+ Mt~ b))

= S(Mi(t —a) = My(t - b)).

1 .
= 1- 5(1 — My (t — a))

But we have
(F M- = a)F)(t) = (F MAF (e P)(1) = Ha(e™ )

Thus Map(t) = XBi(ap)(t)A for a fixed operator A € B(X,Y) is a multiplier
defining an operator with norm bounded by ||Hx|| || Al = ||H|] || A]|-

Now, XrA 1= XB,(a1,b1) " " XBn(an,bn) A defines an operator with norm bounded
by [|[H||V]|A||. Tf we have

) M(t) =3 xn, T

where (R;)}=o C Qn and (1})7-q C B(X,Y), then M is a multiplier with the norm
of the associated operator bounded by

IHIN DIl
j=0

For general M of bounded variation there exists by Lemma 3.1 a sequence of (M(k))k
of the form (5), which converges uniformly to M and with ||[M*)]|,; < 3N Vary (M).
We have for f € L,(RY, X) N L;(RY, X) and g € L,(RY, X*)n L (RN, X*),
1/p+1/q =1, with supp(f) and supp(g) bounded that

~

[, <901 FTHMO)f)(s) > ds]
= | [ <30),M()f(s) > dsf

= lim | [ <G(s), M®)(s)f(s) > ds|

k— oo RN

= im | [ <g(s) FHMB())(s) > ds]
k—oo ' fRN
3V Vary (M)]|gllql | £lp-
By Lemma 3.3 (i) Kq extends to a bounded operator, since L, ([RN, X*) is the dual
of L, (RN, X for the reflexive space X. O

IA

Theorem 3.5. Let X or Y have the UMD property. Assume that the variation
of M : RN - B(X,Y) on the hypercubes K}JCVT of the Lizorkin decomposition are
uniformly bounded by C > 0. Then

i ~

Kf(t)=M@)f(t), teRN,
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()
N

FiGure 2. In 2 dimensions, [Jz is always covered by 24 squares KiT

for f € S(IRN,X) can be extended to a bounded operator
K :B; (RY, X)— B} (R",Y)
foralll<p<oo, 1 <qg<oo,sé€lR.
Proof. We first see by geometrical considerations, that for A(j, N) = {(r, k) : 7 €
I'n,j—1—logy(N)/2<k<j+1}
1Y | JAEY, « (k1) € A(G, N)}.

But |A(j, N)| < 4¥(2 + log,(N)/2). Thus, for fixed N, each element of the Besov
decomposition is enclosed in a fixed number of elements of the Lizorkin decompo-
sition (see Figure 2). By definition of the Besov norms, we need to show that the
operators Lj;, j € INg, given by

L7 = v (065 M@ F0)

= X{U{K (k,T)EA(F, N)}( )¢§V( ) ( ) (t)

Yo xkp M)

(k,T)EA(S,N)

~

are uniformly bounded in B(L, (]RN,X), Ly (]RN,Y)_). Note that we were able to
replace IJN by the covering of elements of the Lizorkin decomposition, since the

support of ¢;V is enclosed in IJN.
We proceed to estimate for each k € INg operators in L, (]RN, X) of the form

(6) LF(t) = xxpy (8 OM B ().

Now xgn M () is uniformly bounded by hypothesis and (ﬁjv is S(]RN). By Propo-
sition 3.4 and Lemma 3.1 all operators L' are uniformly bounded. Since only a sum
of |A(j, N)| operators of the form L’ are needed to express L;, we have finished the
proof. O

Corollary 3.6. The UMD property is necessary in both Proposition 3.4 and in
Theorem 3.5.
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Proof. First choose N = 1, X =Y, and assume this space does not have the UMD
property. In case of Proposition 3.4 choose the multiplier M (t) = isign(t)/. By
definition, M does not have an associated bounded operator.

In the case of Theorem 3.5 let 1 < ¢ < co. We choose a norming sequence qﬁ;
with with support in

{zreTR: 523 ezl < 72]}
Tt follows that ¢J1|Jj = 1, with

= (e R: 107 <ol < 29}

»-PIR]

Now take a sequence in (f,)n in the set (4) with the property || fallp = L, [|H fallp >
n and supp(f,) C (=2, 2%»] for a strictly increasing sequence (k). Put g,(t) =
eizkn+3tfn(t)/n. Then ||gn||, = 1/n and

supp(gn) C (72579 25] C Jk, 13.

We then define the multiplier M (t) = isign(t — .an+3)[ for t € [lin+3' M has
variation 1 on each I} 4, n€IN. Put g =3 g,. Taking the supports of (¢,)n
ito account we have

||g||Bn (R, X) <Z||]: ¢kn+3gn)”

< Z [F = Sk, 459 |12

< Z||f-1¢in+3||1||gn||z
n=1

< D _(1/m)? <o,
n=1

But if K were the operator associated with M, we would have

JRX) T Z”]: ¢kn+3 * Kgn|2

o0

> n—q||7'lfn||g

n=0
> 3
n=0

= OoQ.

Again we have taken into account the supports of ¢J1 and Mg, . Clearly K cannot
exist. O

We call the decomposition of IR by the rectangles

jS_l 2]1 '7: .
DY = e WY sme{ T IEO L e, jeny
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the dyadic decomposition. This decomposition is used in the classical Marcinkiewicz
Multiplier theorem. We are only able to obtain a vector-valued version if we do not
require the associated operator obtained to be an endomorphism.

Corollary 3.7. Let X or Y have the UMD property. Assume that the variation
of M : RN — B(X,Y) on the rectangles Dé\fj of the dyadic decomposition are
uniformly bounded by C' > 0. Then

Kf(t)=M(®)f(t), temRY,
for f € S(IRN,X_) can be ertended to a bounded operator
K :B; (R, X) = B2 (RY,Y)
forall<p< oo, 1<g¢g<oo,s€IR andd > 0.
Proof. The proof follows the lines of the proof of Theorem 3.5. However, the
covering of [JJ-V now looks like this:
v C U{Di\,rk ke B(ja N)ae € {il}N}a

where B(j, N) = {k € N’ : j—1—1logs(N)/2 < max(k;) < j+1}. But the growth
of |B(j, N)| can only be estimated to Order O(j), e. g. |B(j,N)| < Co(j — 1) :=
2N (j = 1)(2 +log,y(N)/2). Tf we proceed in the proof of Theorem 3.5, let M be the
uniform bound for norms of the appropriately modified operators L’ in Eq. (6) for
the dyadic decomposition. Let €7 = supgen, Q_k‘s(k + 1). We then estimate for
g € By ,(RY, X):

BE 5IRN Z S 6||T )

< (CoM)qslip||f_1(¢iv)||(fz2k(s_6)(k— Dllgllz
< Cl(CoM)qSI;P||f_1(¢éV)||(fZQkSHgHg
< (RN, x)"
This finishes the proof. O

4. APPLICATIONS

We first consider a simple result for analytic semigroups, before we apply the
Mikhlin Multiplier theorem to Volterra integral equations. Let é;g(f, X)={f¢€
By (IR, X) : supp(f) C I} for any interval I C IR. This is a Banach space. An im-
portant note: in this section _]?Wﬂl denote the Laplace transform IOOO e M F(t)dt, not
the Fourier transform, of a function f for A in an appropriate (complex) right half-

plane. The following type of maximal regularity was considered by A. Lunardi [5]
and H. Amann [1].

Example 4.1. Let A generate the bounded, analytic semigroup T'(:). Then the
Cauchy problem

u'(t) = Au(t) + f(2), u(0) = up
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with uy € D(A) and f € Bj (R}, X) has a solution u € Bj*t!'(IRS, X) with
Au € B} (R}, X).

Proof. Since the required estimates of Theorem 3.5 on M (t) = A(t— A)~" are well-
known to be fulfilled for analytic semigroups, the spaces B;7q(IR, X) are spaces of
maximal regularity for the mapping f +— u’. The conditions on the support follows
easily from the uniqueness of a solution u. O

Let Y be a Banach space densely embedded in X. We are interested in solving
the equation

(7) u(t) = (Axu)(t)+ f(t),  u(0) = uo,

in a Banach space X, where

A€ LPe([0,00), B(Y, X)) := (] L1([0,al, B(Y, X))
a>0

up € X, and f : [Ri — X with properties to be determined. X, Y, and A in this
section will always be assumed to be of this nature. Maximal regularity is achieved,
when there is a Banach space F, such that for all f € E the solution of (7) is also
in E. We call S a solution family with respect to A, if S € C(IR$,B,(X)) N
C(RS, B,(Y)) and

Sty=y+(AxS) )y, Sty=y+(S*A)(t)y

for all y € Y. We call (7) parabolic, if A\(A) 1Y — X is closed (A € @4) and there
exists an M > 0, such that for all A € @4 the estimate ||(7 — 2(/\))_1”5(2) <M
holds for 7 = X and 7 =Y.

We recall that A € Llec (]R(_)l_,B(Y, X)) is called k-regular if there exists a C' > 0,
such that for all y € Y, n < k and A € €4 holds

A" AT (N)yllz < C(llyllz + | AN yllz)

for Z =X and Z =Y. (We suppress that in the case Z =Y we actually take the
part of f/l\()\) inY.)

We now consider the equation (7), where A is of sub-exponential growth. If the
spaces X and Y have a Fourier type p > 1, then the following theorem uses weaker
assumptions than those that are used in [8], Section 7.

Theorem 4.2. Let X, Y have Fourier type p. Assume that (7) is parabolic. Let
A be 2-regular, if p = 1, or l-regular, if p > 1, then (7) has a solution for each
fe B;7q(IRO ,Z), such that u € B;7q(IRO ,Z), where 1 < p,qg < 0o, s € IR, and
J=XorZ=Y.

Moreover, let a € Llloc(IR?I_) be 2-reqular, if p = 1, or l-regular, if p > 1. If there
extsts a K > 0 with

@A = AN lsxyy < K
forAe @y and f =axyg, g € B;q(IRg_,X), then u € B;yq(]Rg_,Y_).
Proof. Consider the following multiplier
Mo(A) = (I — A(A))_l
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This will be a multiplier leading to the bounded solution operator S in both
B, (IR, X) and B (IR,Y). By assumption, we have that [[Mo(})||sry) < M,
independent of A € @y. We need to establish bounds for the derivatives of My.

MM < (IMoMIHIAA' (T = A)
< M(IT=AN) 7+ AT = AN) )
< M((2M +1).

M (N < IMo()[IAZA (M) (T — AN) 71| + 202 A" (A) Mo’ (V)]
< M@2M+1)+ M@2M +1)%

If A is l-regular, we use the first inequality and if A is 2-regular both.

We now apply Theorem 2.5 to Ms := My(d + ¢-) for § > 0. From this we infer
the existence of bounded operators Ks in B;q(IR,Y) with [|Ks]| < Cp 45 for all
d > 0 with

F(Ksf) = MsF(f).

Using the relationship between Fourier and Laplace transform, we find that the
operator .5 is bounded in B; (IR,Y), where S is the desired solution operator
given by

(SH(t) = e (Ks(e™" £))(1)

and letting § — 0.
To prove the second part, we see that @M is a multiplier for axS : B, (IR, X) —

B;Vq([ﬂ,/}/) in the same way; replace the estimate ||(7 — /T)_]HB(X) < M with
la(7 = A~ lsxy) < K.

The result on the supports of the solutions is a trivial consequence of the fact
that Eq. (7) is a convolution equation. O
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